本帖最后由 天外天 于 2013-1-22 20:42 编辑 近日,阿根廷一家军事论坛公布了一张GOOGLE EARTH卫星图片,图片中显示,在中国戈壁沙漠中有一个长度大约为200米的巨型白色人造结构,据该论坛称,这个人造结构在模拟美军大型航母的甲板,并配图进行了比较,在图中,所谓模拟甲板被武器轰击出两个巨大的弹坑,十分醒目。由此推测,这个地方很大可能上疑似为中国反舰弹道导弹攻击航母实验基地。反航母的弹道导弹的主要目标是航母。它的有效作战范围是将近2,000公里。也就是说,从中国发射的话这个导弹打不到美国的本土,无法对美国本土和太平洋区域的夏威夷群岛构成威胁。只能对逼近我国近海的航母产生作用。 所以“航母杀手”实际上是一个防御性的武器。是一个岸防兵器。而航母本身,却是一个纯粹的进攻性武器。反舰弹道导弹通常被认为是一种全新的武器,其实并非如此。对弹道导弹自身来说,要打击水面舰艇之类的活动目标主要有两个问题需要解决:一是导弹制导,解决目标脱离瞄准点的问题,要做到能及时发现、跟踪目标;二是导弹控制,要确保准确命中被锁定的目标。1984年服役的美国“潘兴”-2型中程弹道导弹采用雷达地形匹配制导,与反舰弹道导弹同样需要应用末端精确制导和再入机动飞行技术,两者不过在应用技术的类型上有所区别。图为西方网站公布的DF-21D反舰弹道导弹的射程范围。实施反舰弹道导弹计划,相对打固定目标,弹道导弹的主要技术改进主要有以下三个方面:一是再入机动制导控制率和计算执行机构的优化,提高突防能力和机动性能;二是研制新的多模式制导头,使之可以配合飞行弹道搜索海上舰艇;三是建设用于对远程水面目标初期搜索跟踪的战略战术侦察系统。改进制导控制率和新研制雷达这两个与导弹直接相关的方面,在现有对地攻击的精确制导型“东风”导弹弹头上改进升级即可,马上就可以在专用的“半实物仿真”平台上试验联调,并不需要从头研制,远程实时侦察定位更是与近几十年来侦察系统的发展目标一致。反舰弹道导弹系统并不只是一枚导弹,从广义上讲,它包含了侦察、通信、指挥、作战四大系统,是一支军队C4ISR体系的缩影和远程作战体系的重要组成部分。它与二战期间德国的超级武器有着根本区别,它并不是走加强单件武器威力的老路,而是通过整合、开发各种资源,建立一整套适用于各种不同作战环境、不同任务需求的作战体系,具有极大的发展潜力,其意义与喷气式飞机装备空军相类似。现代航母战斗群具备1,500千米以上的打击能力,要有效防御敌人的进攻,就必须在敌尚未进入攻击阵位时将其摧毁。所以反舰弹道导弹的外部侦察系统必须具备2,000千米以上的搜索、跟踪能力,有效覆盖东到南方群岛、南至新力口坡的广大海域,从而为导弹指引目标。要做到这一点,就必须综合运用包括侦察卫星、电子侦察卫星、超视距天波雷达、无线电监听站、无人侦察机在内的多种手段。在未来战争中,中国在战前必将及时发射侦察卫星来弥补原有系统的不足,进一步加强中国近地轨道侦察能力。电子侦察卫星与地面监听站都是通过监听无线电信号的方式来进行侦察活动,他们的作用一是侦察敌方雷达的位置和所用频率等性能参数,为战略轰炸机、弹道导弹突防和实施电子干扰提供数据;二是探测敌方军用电台和信号发射设施的位置,以便窃听和破坏;通过对所获情报的分析,还可进一步揭示敌方军队的调动、部署乃至战略意图。图片红色区域为美军认为中国建造的天波雷达最大探测距离。若以美军的情况对比来看,美国海军“白云”天基星座电子情报卫星3颗组成一簇,采用时差法测定舰船位置、航向和航速,定位精度为2-3千米。埃多公司生产的ES-3701战术侦察系统测向精度达到2°,F-22战斗机装备的电子侦察系统对无线电信号的定位精度可达0.5°。美国在日本三泽基地部署有直径230米、高47米的“象栏”全向无线电接收天线,负责捕捉来自各个方向的舰艇通信短波信号,并对其进行精确定位。“象栏”作为巨型无线电测向天线;其精度必然好于小型定位系统,假如测向精度为0.1°-0.5°,那么在2,000千米距离上对目标的定位误差就是3.5到17千米,这已经足以为其他侦察手段或反舰导弹提供目标位置。图为国外认为中国建设天波雷达的卫星照片。中国军备的各种弹道导弹中,早期型号采用液体火箭发动机;发射准备时间长,不利于打击对时间敏感的机动目标;且这些导弹即将退役,不可能用其改装。从这篇文中,大致可以了解到中国对这种技术的研究已经十分深入。反舰弹道导弹有着用于侦察搜索突防的特殊弹道。如果使用第三级固液混合火箭发动机,可以将中段传统的抛物线弹道转变为带3个波峰的跳跃式弹道,使得探测系统在导弹再入大气层之前很难准确探测和计算导弹的落点,从而大大地提高弹道导弹的突防能力。图为中国国内公开论文中关于变质心弹头攻击航母的研究。反舰弹道导弹应同时采用中国钱学森院土提出的“弹道一巡航弹道”,在初段、中段采用弹道飞行,末端弹头为重返机动体,在弹道下降过程中通过空动舵或者可变弯尾控制导弹姿态,利用攻角和侧滑角的变化调整导弹的升力和阻力来控制速度矢量的大小和方向,从而调整弹头飞行方向并增加弹头机动范围,实现末端精确制导。如果以“东风”-21改装反舰弹道导弹,那么正面90°角范围内的雷达反射截面积应该会在0.01平方米上下。目前战斗机采用的雷达隐身技术通常可以将RCS降低1-2个数量级,从10平方米降低到1-0.1平方米,导弹弹头外形本身就适合减少雷达反射面积,进一步降低的潜力比飞机小,但是弹头在大气层外的弹道中段不需要考虑气动和加热问题,直接在重返阶段将添加的隐身设备烧掉就可以,因此判定RCS降低幅度为一个数量级。反舰弹道导弹在发射时装填由远程侦察系统(卫星、无人机)提供的目标数据。如果在战时可部署超过20枚侦察卫星,就可做到每半小时更新一次目标数据,并由天波雷达进行实时跟踪,这样对目标定位的最大误差不会超过22千米(“尼米兹”级航母35节航速下20分钟航程),这足以满足导弹发射的需要。导弹进入距离目标200-350千米的高空制导段时,目标最大可偏离初始定位位置11千米(“尼米兹”级航母35节航速下10分钟航程),系统误差达到15-38千米,如果不加修正目标可能脱离导弹低空机动范围。对此导弹可以由下一颗经过目标区的卫星提供目标坐标,也可通过被动雷达或者多模态微波观测仪自行探测,假如雷达的测向精度达到1°,定位误差就是3.5千米,远远小于弹头的末端机动范围。在距离目标60千米的低空制导段,弹头速度降低到6马赫以下,可使用主/被动雷达、红外制导头搜索目标,这时弹头高度约20千米,有约20°-40°的俯视角,虽然会受到海面杂波的强烈干扰,但航母不是飞机、导弹等低空小目标,它的雷达反射截面积高达十万平米,其雷达特征与海面杂波差别巨大,普通的频率捷变的单脉冲体制的主动雷达也可以发现目标,如美国“鱼叉”导弹在末端跃起攻击时就有20°的俯视角。在普通单脉冲体制雷达不能满足制导需要的情况下,也可使用弹载毫米波合成孔径(SAR)雷达进行末端制导,它在方位分辨率上比真实孔径雷达提高一个数量级以上,可实现对目标的直接成像;从而大大提高弹头的抗干扰能力。虽然SAR雷达无法探测正前方的目标,但反舰导弹采用摆动式弹道突防的飞行轨迹就是S形,从而始终与目标保持着一定的夹角,这样既可以提高导弹的突防概率,又适合SAR雷达的应用。中国合成孔径雷达已经应用在反舰导弹、空地导弹、对地观测卫星等领域。反舰弹道导弹的主要攻击目标是敌方航母编队,按照美军战术条令,在中等威胁海域实施中、低强度作战时,双航母战斗群是航母编队的典型编成,包括2艘航空母舰、10-12艘驱逐舰、2-4艘核潜艇、2-3艘补给舰,其对抗反舰弹道导弹的主要手段是海基中段防御系统(SMD)。依据携带该系统的军舰的部署位置,可以全程拦截弹道导弹,但主要是中段防御。美国海基中段拦截系统(SMD)已经开始部署,反舰导弹在实战中必然面对敌方的拦截,为了增加突防成功率,有必要采取多种突防措施。目前常见的弹道导弹突防手段包括:饱和攻击同时发射多枚导弹或携带多弹头,超出防御系统的拦截能力。诱饵欺骗通过使用诱饵,使防御系统难以分辨出真目标,包括复制诱饵(大量与真弹头目标特征相近似的诱饵)、差异化诱饵(大量与真弹头之间、彼此之间目标特征均有一定差异的诱饵,从而使得防御系统无法通过寻找目标特征差异来判断真弹头)、反模拟诱饵(将真弹头伪装成诱饵)。总的来说,反舰弹道导弹的作战效能超过“鱼叉”、“飞鱼”等常规反舰导弹,具有更强的突防、摧毁能力 , 是航母的真正杀手。